Butterfly resource-use in intensively and extensively managed meadows: experimental data with *Maniola jurtina* as a model

Future of Butterflies in Europe
Wageningen, March 2012

Julie Lebeau
Céline Marchand
Renate Wesselingh
Hans Van Dyck
Biodiversity Research center
Earth and Life Science Institute
Louvain University, Belgium
Nectar in I and E meadows

Grassland management

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>Nectar</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Quantity</td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Low</td>
<td>Diversity</td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>? (fertilizer ↠ AA in nectar)</td>
<td>Quality</td>
<td></td>
<td>High because diversity?</td>
</tr>
</tbody>
</table>
Changing organisms in Changing environments using a resource-based approach
PhD project

Changing organisms in Changing environments using a resource-based approach

Main focus: identify changes in resources (mainly *nectar*) and their effect on common butterflies.
Changing organisms in Changing environments using a resource-based approach

Main focus: identify changes in resources (mainly nectar) and their effect on common butterflies

Observations
- Nectar quality, quantity and conformation
- Behaviour of nectar use
- Morphology

Experiments
- Behaviour of nectar use
- Life-history
- Morphology
Fitness consequences of nectar regimes in intensive and extensive meadows for *Maniola jurtina* (meadow brown butterfly)
Nectar for adult butterflies

Nectar =
• water
• sugars
 • Amino Acids
 • other compounds
Nectar for adult butterflies

Nectar =
• water
• sugars
• Amino Acids
• other compounds

Reproduction
• Sugars
• AA

Survival
Somatic maintenance
Dispersal
...

Further foraging

O'Brien, Oikos (2004); Mevi-Schütz, American Naturalist (2005)

Adapted from Boggs, Functional Ecology (2009)
Nectar for adult butterflies

Intensive meadows

Extensive meadows

<table>
<thead>
<tr>
<th>I</th>
<th>Nectar</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Quantity</td>
<td>High</td>
</tr>
<tr>
<td>Low</td>
<td>Diversity</td>
<td>High</td>
</tr>
<tr>
<td>? (fertilizer → AA in nectar)</td>
<td>Quality</td>
<td>High because diversity?</td>
</tr>
</tbody>
</table>
• Univoltine
• Flight period (in Belgium):
 Mid june ➔ mid august
• Adults: ♂ and ♀ feed
• Occurs naturally in intensive and extensive meadows
Maniola jurtina

Preferred flower species

Personnal observations

- *Trifolium pratense*
- *Centaurea jacea*
Methods

Wild butterflies
- 20 males + 20 females
- Same origin (extensive meadow)

Flight cages 48h
- 10 females + 10 males
- Intensive: 10 red clover (*Trifolium pratense*) inflo
- Extensive: 100 knapweed (*Centaurea jacea*) inflo
Methods

Wild butterflies
- 20 males + 20 females
- Same origin (extensive meadow)

Flight cages 48h
- 10 females + 10 males
- Intensive: 10 red clover (*Trifolium pratense*) inflo
- Extensive: 100 knapweed (*Centaurea jacea*) inflo

Activity
- 1 hour/day
Methods

Wild butterflies
• 20 males + 20 females
• Same origin (extensive meadow)

Flight cages 48h
• 10 females + 10 males
 - Intensive: 10 red clover (Trifolium pratense) inflo
 - Extensive: 100 knapweed (Centaurea jacea) inflo

Longevity
Unlimited access to food
- Body mass
- Lipid content
Methods

Wild butterflies
- 20 males + 20 females
- Same origin (extensive meadow)

Flight cages 48h
- 10 females + 10 males
 - Intensive: 10 red clover (*Trifolium pratense*) inflo
 - Extensive: 100 knapweed (*Centaurea jacea*) inflo

Longevity
- Unlimited access to food
 - Body mass
 - Lipid content

Body mass

<table>
<thead>
<tr>
<th>Effect</th>
<th>DDL Num.</th>
<th>DDL Res.</th>
<th>F</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>62</td>
<td>82.72</td>
<td><.0001</td>
</tr>
<tr>
<td>treatment</td>
<td>1</td>
<td>62.1</td>
<td>7.65</td>
<td>0.0075</td>
</tr>
<tr>
<td>sex*trtmnt</td>
<td>1</td>
<td>62</td>
<td>0.07</td>
<td>0.7940</td>
</tr>
</tbody>
</table>

Dry body mass (mg ± SE)

- Females
- Males
Lipid content (potential fecundity)

<table>
<thead>
<tr>
<th>Fixed effects tests</th>
<th>Effect</th>
<th>DDL Num.</th>
<th>DDL Res.</th>
<th>F</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>61.2</td>
<td>1.17</td>
<td>0.2830</td>
<td></td>
</tr>
<tr>
<td>treatment</td>
<td>1</td>
<td>61.3</td>
<td>13.08</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>sex*trtmnt</td>
<td>1</td>
<td>61.2</td>
<td>0.10</td>
<td>0.7532</td>
<td></td>
</tr>
</tbody>
</table>
Longevity

Fixed effects tests

<table>
<thead>
<tr>
<th>Effect</th>
<th>DDL Num.</th>
<th>DDL Res.</th>
<th>F</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>62.3</td>
<td>20.09</td>
<td><.0001</td>
</tr>
<tr>
<td>treatment</td>
<td>1</td>
<td>62.4</td>
<td>8.87</td>
<td>0.0041</td>
</tr>
<tr>
<td>sex*trtmnt</td>
<td>1</td>
<td>62.1</td>
<td>1.03</td>
<td>0.3141</td>
</tr>
</tbody>
</table>

Diagram:
- **Longevity (days ± SE)**
- **E** represents females, **I** represents males.
Activity: number of flights

<table>
<thead>
<tr>
<th>Effect</th>
<th>DDL Num.</th>
<th>DDL Res.</th>
<th>F</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean_temp</td>
<td>1</td>
<td>25</td>
<td>7.04</td>
<td>0.0136</td>
</tr>
<tr>
<td>mngmt</td>
<td>1</td>
<td>25</td>
<td>4.65</td>
<td>0.0409</td>
</tr>
<tr>
<td>day</td>
<td>1</td>
<td>25</td>
<td>2.09</td>
<td>0.1603</td>
</tr>
<tr>
<td>mngmt*day</td>
<td>1</td>
<td>25</td>
<td>1.22</td>
<td>0.2800</td>
</tr>
</tbody>
</table>

△ day 1
▲ day 2
Consequences

Poor nectar availability in intensive meadows

Poor physiological conditions

Impact on populations dynamics
Consequences

Poor nectar availability in intensive meadows

Poor physiological conditions

Impact on populations dynamics

Öckinger, Ecography, 2007
Consequences

Poor nectar availability in intensive meadows

Adults rely less on nectar intake and more on resources from larval stage

Selection for «more capital» breeders in intensive landscapes
Consequences

Poor nectar availability in intensive meadows

Freshly emerged adults

Preliminary analysis

Adults rely less on nectar intake and more on resources from larval stage

Selection for «more capital» breeders in intensive landscapes?
Acknowledgements

Mr Alexandre, Mr Baudoin, Mr Paquay Marc Migon, Michel Pirnay, Christophe Pels Céline Marchand Murielle Chane, Morgan Dalmas

Behavioural Ecology & Conservation Group

Evolutionary Plant Ecology Group
Acknowledgements

Thank you for your attention